

Vascular Pharmacology Volume 43, Issue 4, October 2005, Pages 234-241

Cardiovascular effects of ginger aqueous extract and its phenolic constituents are mediated through multiple pathways

Muhammad Nabeel Ghayur ^{a b}, Anwarul Hassan Gilani ^a or 🛛 , Maria B. Afridi ^a, Peter J. Houghton ^b

Show more 🗸

i≡ Outline 🛛 😪 Share 🗦 Cite

https://doi.org/10.1016/j.vph.2005.07.003 A Get rights and content A

Abstract

Ginger is a world known food plant which is equally reputed for its medicinal properties. We report here the hypotensive, endothelium-dependent and independent vasodilator and cardio-suppressant and stimulant effects of its aqueous extract (Zo·Cr). Zo·Cr, which tested positive for saponins, flavonoids, amines, alkaloids and terpenoids, induced a dose-dependent (3.0-10.0 mg/kg) fall in the arterial blood pressure (BP) of anaesthetized rats which was partially blocked by atropine (1 mg/kg). In isolated endothelium-intact rat aorta, Zo·Cr (0.01–5.0 mg/ml) relaxed the phenylephrine (1 µM)induced contractions, effect partially blocked by atropine (1 μ M). Zo Cr inhibited the K⁺ (80 mM)induced contractions and also shifted the Ca⁺⁺ dose-response curves to the right, similar to verapamil, indicating Ca⁺⁺ antagonist activity. An atropine-resistant and L-NAME-sensitive vasodilator activity was also noted from ginger phenolic constituents 6-, 8- and 10-gingerol, while 6-shogaol showed a mild vasodilator effect. In guinea-pig atria, Zo·Cr (0.1–5.0 mg/ml) inhibited the force and rate of atrial contractions. Pretreatment with atropine blocked the inhibitory effect and a stimulatory effect was unmasked which was resistant to propranolol and verapamil but sensitive to ryanodine, blocker of Ca⁺⁺ release from intracellular stores. Later at doses \geq 1.0 mg/ml, the extract completely suppressed the atrial tissue, effect resistant to glibenclamide, pyrilamine, aminophylline and L-NAME. These data indicate that the aqueous ginger extract lowers BP through a dual inhibitory effect mediated via stimulation of muscarinic receptors and blockade of Ca⁺⁺ channels and this study provides sound mechanistic basis for the use of ginger in hypertension and palpitations.

< Previous

Next |

Keywords

Ginger; Hypotensive; Cardioactive; Cholinergic; Calcium antagonist; Gingerol

Recommended articles

Cited by (134)

Effets cardio-métaboliques d'extraits de zingiber officinale roscoe chez les patients camerounais diabétiques de type 2 après six semaines de supplémentation : essai clinique à bras unique

2022, Annales de Cardiologie et d'Angeiologie

Show abstract \checkmark

The effect of ginger supplementation on metabolic profiles in patients with type 2 diabetes mellitus: A systematic review and meta-analysis of randomized controlled trials 2022, Complementary Therapies in Medicine

Show abstract \checkmark

Quantitative profiling of gingerol and its derivatives in Australian ginger 2021, Journal of Food Composition and Analysis

Show abstract \checkmark

Improved oral bioavailability and target delivery of 6-shogaol via vitamin E TPGSmodified liposomes: Preparation, in-vitro and in-vivo characterizations 2020, Journal of Drug Delivery Science and Technology

Show abstract \checkmark

Antihypertensive phytocomplexes of proven efficacy and well-established use: Mode of action and individual characterization of the active constituents 2020, Phytochemistry

Show abstract \checkmark

Mechanisms underlying the vascular relaxation activities of Zingiber officinale var. rubrum in thoracic aorta of spontaneously hypertensive rats 2020, Journal of Integrative Medicine

Show abstract \checkmark

View all citing articles on Scopus

View full text

Copyright © 2005 Elsevier Inc. All rights reserved.

Copyright © 2023 Elsevier B.V. or its licensors or contributors. ScienceDirect® is a registered trademark of Elsevier B.V.

